Factorization method for solving eigenvalue problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Shooting Method for Solving Eigenvalue Problems

The shooting method is a numerically effective approach to solving certain eigenvalue problems, such as that arising from the Schrödinger equation for the two-dimensional hydrogen atom with logarithmic potential function. However, no complete proof of its rationale and correctness has been given until now. This paper gives the proof, in a generalized form.

متن کامل

An integral method for solving nonlinear eigenvalue problems

We propose a numerical method for computing all eigenvalues (and the corresponding eigenvectors) of a nonlinear holomorphic eigenvalue problem that lie within a given contour in the complex plane. The method uses complex integrals of the resolvent operator, applied to at least k column vectors, where k is the number of eigenvalues inside the contour. The theorem of Keldysh is employed to show t...

متن کامل

A numerical method for solving inverse eigenvalue problems

Based on QR~\ike décomposition with column pivoting, a new and efficient numerical method for solving symmetrie matrix inverse eigenvalue problems is proposed, which is suitable for both the distinct and multiple eigenvalue cases. A locally quadratic convergence analysis is given. Some numerical experiments are presented to illustrate our results. Résumé. Basée sur la décomposition QR-iype avec...

متن کامل

A Jacobi-Davidson Method for Solving Complex Symmetric Eigenvalue Problems

We discuss variants of the Jacobi–Davidson method for solving the generalized complex-symmetric eigenvalue problem. The Jacobi–Davidson algorithm can be considered as an accelerated inexact Rayleigh quotient iteration. We show that it is appropriate to replace the Euclidean inner product xy in C by the bilinear form x y. The Rayleigh quotient based on this bilinear form leads to an asymptotical...

متن کامل

A Smallest Singular Value Method for Solving Inverse Eigenvalue Problems

Utilizing the properties of the smallest singular value of a matrix, we propose a new, efficient and reliable algorithm for solving nonsymmetric matrix inverse eigenvalue problems, and compare it with a known method. We also present numerical experiments which illustrate our results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics and Communications

سال: 2012

ISSN: 2312-1807,1811-4512

DOI: 10.20535/2312-1807.2012.17.3.219558